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We apply an oligo-library and machine learning-approach to characterize the sequence and

structural determinants of binding of the phage coat proteins (CPs) of bacteriophages MS2

(MCP), PP7 (PCP), and Qβ (QCP) to RNA. Using the oligo library, we generate thousands of

candidate binding sites for each CP, and screen for binding using a high-throughput dose-

response Sort-seq assay (iSort-seq). We then apply a neural network to expand this space of

binding sites, which allowed us to identify the critical structural and sequence features for

binding of each CP. To verify our model and experimental findings, we design several non-

repetitive binding site cassettes and validate their functionality in mammalian cells. We find

that the binding of each CP to RNA is characterized by a unique space of sequence and

structural determinants, thus providing a more complete description of CP-RNA interaction

as compared with previous low-throughput findings. Finally, based on the binding spaces we

demonstrate a computational tool for the successful design and rapid synthesis of functional

non-repetitive binding-site cassettes.
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For the past two decades, synthetic biologists have built a
portfolio of increasingly sophisticated biological circuits that
are able to perform logical functions inside living cells1–4.

Such circuits are made from “biological parts” which are bio-
chemical analogs of electronic components that are routinely used
for the design of electrical circuits. Unfortunately, unlike their
electronic counterparts, connecting biological parts to form cir-
cuits often fails. This is mostly due to the fact that many parts are
short sequences of DNA or RNA, and connecting them intro-
duces unpredictable and undesirable sequence effects5. As a
result, many iterations of trial and error are often needed before a
successful design is achieved. This is termed the design, build, test
(DBT) cycle in synthetic biology and is considered to be a major
bottleneck for progress in the field. Specifically, the field is lacking
computational methods that allow users to reliably design their
system of choice without going through multiple time-consuming
DBT cycles. The challenge of formulating such algorithms is
rooted in the large space of biomolecules, and the variety of
possible interactions between them. This translates to a plethora
of molecular mechanisms, each governed by different kinetics,
thermodynamic parameters, and free-energy considerations.
Consequently, modeling these systems necessitates case-specific
kinetic and/or thermodynamic modeling approaches. Reliable
algorithms are especially needed for the design of RNA-centric
functional modules, and for transcriptional expression systems.

In recent years, the emergence of oligo-library (OL) studies5–9

have provided the community with increasingly large databases of
characterized synthetic and natural parts (e.g., enhancers, pro-
moters and 5′ UTR segments) in various cell types. This plethora
of data allows one to devise quantitative thermodynamic or
machine learning (ML) models, which can then be tested on
predicted sequences to assess their reliability. Several works have
been published demonstrating that OLs of promoters in S. cere-
visiae and E. coli10–12 (numbering several hundred thousand to
millions of variants) provide a suitable training set for ML
algorithms. The performance of these algorithms on unseen data
as quantified by Pearson correlation was ~0.8. In another recent
study, the authors used multiple rounds of experimentation and
variant analysis to devise an algorithm for the functional design of
non-repetitive sgRNA cassettes in bacteria13. Therefore, a large
dataset of characterized parts is a prerequisite for devising a
reliable design algorithm.

Another RNA-based system, where a reliable design algorithm
can be useful for various applications, are phage coat proteins
(CPs). These RNA-binding proteins (RBPs) have been utilized as
both a model system for understanding RNA–protein interac-
tions, as well as for a variety of applications, including gene
editing and RNA-tracking14–19. Typically, these proteins are
utilized in conjunction with a synthetic long non-coding RNA
cassette that encodes multiple repeats of the desired CP binding
sites. However, a limited understanding of CP-binding in vivo has
forced cassette designs to incorporate repeated hairpin-like
sequence elements, making them cumbersome to synthesize
using current oligo-based technology. Subsequent steps, including
cloning and genome maintenance, are also badly affected by the
repeat nature of the cassette. Moreover, repeat sequence elements
are notoriously unstable20, thus damaging protein binding to the
cassette and causing occupancy-related experimental noise.
Consequently, these limitations hinder the utility of these cas-
settes for robust quantitative measurements21 as well as expan-
sion to more complex multi-genic applications.

Previous findings have indicated that specificity in phage CP
binding to RNA is determined by structural elements formed by
specific sequence motifs22–28. This implies that for a given phage
CP, many different sequences may become potential binding sites by
folding into a common functional structure. These characteristics

make CP binding to RNA a suitable candidate for an OL experi-
ment. However, while useful for identifying functional variants, the
OL scale is much smaller than the available sequence space for
~20–25 nt-long binding sites. Thus, the vast majority of functional
variants cannot be sampled. Recently developed ML algorithms29–31

provide the necessary tool to computationally expand the variant
database to millions of potentially functional sequences, using the
OL as an empirical training dataset. The result is a ML model that
can computationally score any sequence for the desired function-
ality, and thus provide a more complete description of the char-
acteristics of CP binding to RNA.

In this work, we apply the OL–ML approach to characterize the
sequence and structural determinants of phage CP RNA binding
sites. We generate an OL of ~20,000 candidate sites for the phage
CPs of MS2 (MCP), PP7 (PCP), and Qβ (QCP), and evaluate the
dose–response function of the resulting RNA hairpins in a
massively-parallel in vivo expression assay in bacteria. We train a
convolutional neural network (CNN) on the OL sequences and
their experimental binding scores, and use the resultant model to
predict sequences that can bind the phage CPs with high affinity,
which we then experimentally verify. Our results show that all three
proteins occupy a predominantly unique sequence and structural
binding space, thus providing a more complete picture of CP
binding to RNA as compared with previous low-throughput
binding assays. Finally, using the individual CP binding spaces,
we were able to devise a design algorithm for customized non-
repeat and orthogonal multi-binding-site RNA cassettes for CP-
based applications in potentially any organism.

Results
Induction-based Sort-seq (iSort-seq). We recently showed that
placing a hairpin in the ribosomal initiation region of bacteria can
lead to a ~×10–100 fold repression effect when bound to an
RBP23,32. The magnitude of the effect allowed us to adapt this
in vivo binding assay to a high-throughput OL experiment. We
designed 10,000 mutated versions of the single wild-type (WT)
binding sites of PCP, MCP, and QCP, and positioned each site at
two positions within the ribosomal initiation region (Fig. 1a top
and Supplementary Data 1). The library consists of three sub-
libraries within the original library: binding sites that mostly
resemble either the MS2-WT site, the PP7-WT site, or the Qβ-
WT site (Fig. 1a bottom and Supplementary Fig. 1). We intro-
duced semi-random mutations, both structure-altering and
structure-preserving, as well as deliberate mutations at positions
that previous studies have shown to be crucial for binding.
Additionally, we incorporated into our library several dozens of
control variants. We used variants characterized in our previous
study as positive and negative controls23,24,33,34 as follows: posi-
tive controls are binding sites that exhibited a strong fold-
repression response, and negative control variants are either
random sequences or hairpins which did not exhibit a fold-
repression response. For the complete library, see Supplementary
Data 1.

We incorporated each of the designed 10k single binding site
variants downstream to an mCherry start codon (Fig. 1b) at each
of the two positions (spacers δ= C or δ=GC) to ensure high
basal expression and enable detection of a down-regulatory
response, resulting in 20k different OL variants. Each variant was
ordered with five different barcodes, resulting in a total of 100k
different OL sequences.

The second component of our system included a fusion of one
of the three phage CPs to green fluorescent protein (GFP)
(Fig. 1b) under the control of an inducible promoter. Thus, we
created three libraries in E. coli cells; each with a different RBP
but the same 100k binding site variants. In order to characterize
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the dose–response of our variants, each library was first separated
into six exponentially expanding cultures grown in the presence
of one of six inducer concentrations for RBP–GFP fusion
induction. If the RBP was able to bind a particular variant, a
strong fold-repression effect ensued, resulting in a reduced
fluorescent expression profile (Fig. 1c). We sorted each inducer-
concentration culture into eight predefined fluorescence bins,
which resulted in a 6 × 8 fluorescence matrix for each variant,
corresponding to its dose–response behavior. We call this

adaptation of Sort-seq “induction Sort-seq” (iSort-seq—for
details, see Methods). As an example, we present a high-affinity,
down-regulatory dose response for a positive variant (Fig. 1d,
bottom V1), and a no-affinity variant exhibiting no apparent
regulatory effect as a function of induction (Fig. 1d, bottom V2).

Calculating binding scores. We conducted preliminary analysis
of the sequencing data to generate mCherry levels per RBP and
inducer concentration for each variant (Fig. S2 and Methods). We

Fig. 1 iSort-seq overview in E. coli. a (Top) Wild-type binding sites for MS2, PP7, and Qβ phage coat proteins and illustrations of the 20k mutated variants
created based on their sequences. (Bottom) Composition of the OL library. Histogram of the number of PP7-based variants (blue), Qβ-based variants
(orange), and MS2-based variants (green) with different edit distances from the MS2-WT binding site. b Each putative binding site variant was encoded on
a 210 bp oligo containing the following components: restriction site, barcode, constitutive promoter (cPr), ribosome binding site (RBS), mCherry start
codon, one or two bases (denoted by δ), the sequence of the variant tested, and the second restriction site. Each configuration was encoded with five
different barcodes, resulting in a total of 100k different OL variants. The OL was then cloned into a vector and transformed into an E. coli strain expressing
one of three RBP–GFP fusions under an inducible promoter (iPr). The transformation was repeated for all three fusion proteins. c The schema illustrates the
behavior of a high-affinity strain: when no inducer is added, mCherry is expressed at a certain basal level that depends on the mRNA structure and
sequence. When inducer (C4-HSL) is added, the RBP binds the mRNA and blocks the ribosome from mCherry translation, resulting in a down-regulatory
response as a function of inducer concentration. d The experimental flow for iSort-seq. Each library is grown at six different inducer concentrations, and
sorted into eight bins with varying mCherry levels and constant RBP–GFP levels. This yields a 6 × 8 matrix of mCherry levels for each variant at each
induction level. (Bottom) An illustration of the experimental output of a high-affinity strain (V1) and a no-affinity strain (V2). See Fig. S13 for flow cytometry
gating strategy details.
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also eliminated variants for which we acquired too few reads (see
Methods for additional details). To ascertain the validity of our
assay, we first characterized the behavior of our control variants
(Fig. 2a). A linear-like down-regulatory effect as a function of
RBP induction is observed for the positive control variants
(green), while no response in mCherry levels is observed for the
negative controls (red). Additionally, the spread in mCherry at
high induction levels is significantly smaller for the positive
control variants than that of the negative control variants.

Next, to sort the variants in accordance with their likelihood of
binding the RBP (i.e., similarity of their dose–response to the
positive controls), we carried out the following computation (for
details, see Methods). First, we characterized all variants by
calculating a vector composed of three components: the slope of a
linear regression, its goodness of fit (R2), and standard deviation
of the fluorescence value at the three highest induction bins
(Fig. 2b, middle). Next, we computed two multivariate Gaussian

distributions using the empirical 3-component vectors, that were
extracted for the positive and negative controls and for the given
RBP, to yield a probability distribution function (pdf) for both the
responsive and non-responsive variants, respectively (Fig. 2b,
right). The two populations are relatively well-separated from one
another, presenting two distinct clusters with minor overlap.
Finally, we defined the “responsiveness score” for each variant
(Rscore - see Methods for a formal definition) as the logarithm of
the ratio of the probabilities computed by the responsive pdf to
the non-responsive pdf. This score was computed for each unique
barcode, and the final result for a sequence variant was averaged
over up to five vectors, one for every variant barcode that passed
the read-number and basal-level thresholds (see Supplementary
Fig. 2 and Methods).

In Fig. 2c left, we plot the expression heatmap of the ~18k
variants with PCP sorted (top to bottom) by decreasing Rscore (see
also Fig. S3 for MCP and QCP). The plot shows that 5470

Fig. 2 Responsiveness analysis and results. a Boxplots of mCherry levels for the positive (green) and negative (red) control variants for each of the six
induction levels for PCP-GFP, based on 75 different variants for positive control and 187 different variants for negative control. On each box, the central
mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The value for ‘Whisker’
corresponds to approximately ±2.7 STD (standard deviation) and 99.3 percent coverage and extends to the adjacent value, which is the most extreme data
value that is not an outlier. The outliers are plotted individually as plus signs. b Schema for responsiveness score (Rscore) analysis. (Left and middle) Linear
regression was conducted for each of the 100k variants, and two parameters were extracted: slope and goodness of fit (R2). The third parameter is the
standard deviation (STD) of the fluorescence values at the three highest induction levels. (Right) Location of the positive control (dark green stars) and
negative control (red stars) in the 3D-space spanned by the three parameters. Both populations (positive and negative) were fitted to 3D-Gaussians, and
simulated data points were sampled from their probability density functions (pdfs) (orange for negative and green for positive). Based on these pdfs the
Rscore was calculated. c (Left) Heatmap of normalized mCherry expression for the ~20k variants with PCP. Variants are sorted by Rscore. Black and red lines
are positive and negative controls, respectively, and the gray graph is the Rscore as a function of variant. (Right) “Zoom-in” on the 2,000 top-Rscore binding
sites for PCP. d (Left) 3D-representation of the Rscore for every binding site in the library and all RBPs. Responsive binding sites, i.e., sites with Rscore > 3.5,
are colored blue for PCP, green for MCP, and yellow for QCP. (Right) “Zoom-in” on the central highly concentrated region. Source data are provided as a
Source data file. Altogether, we identified 1868, 1144, and 2624 binding sites (i.e., Rscore > 3.5) for PCP, MCP, and QCP, respectively. In addition, there were
an additional 3736, 1460, and 4682 “non-classified” binding sites (i.e., 0 < Rscore < 3.5) for PCP, MCP, and QCP, respectively, while the rest were
determined to be non-binding (Rscore < 0).
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variants exhibit an apparent down-regulatory response, defined as
Rscore > 0, corresponding to having a larger probability of belong-
ing to the positive control distribution as compared with the
negative control distribution. By comparison (Supplementary
Fig. 3), MCP and QCP yielded 2604 and 7306 such variants,
respectively. This indicates that while QCP may be the most
promiscuous RBP in our library (i.e., tolerates a more varied set of
binding sites), MCP is likely to be the most limited in terms of
binding specificity. A closer observation of the top of the list (top
2000, Fig. 2c, right) indicates that for a high Rscore, a rapid
reduction in fluorescence is detected in the second bin, which
indicates that these variants also seem to exhibit the strongest
binding affinity. Sorted Rscore values for each RBP as well as the
ΔΔG values derived from those scores (see Supplementary Fig. 3
and Methods) are available in Supplementary Data 1. We next
plot the Rscore obtained for all three RBPs for each variant
(Fig. 2d). We overlay the plot with colored dots corresponding to
the variants with Rscore > 3.5 in each list, which are the most
specific variants. The plots reveal very little overlap between the
subsets of variants that are highly responsive to the different
RBPs, indicating that the vast majority of these highly-responsive
binding sites are orthogonal (i.e., respond to only one RBP),
which was expected for PCP and MCP and PCP and QCP, but
not necessarily for MCP and QCP whose WT sites are not
mutually orthogonal23–25,28,35,36.

RNA-binding sequence preferences. Using empirical Rscore
values and associated binding site sequences as a training set, we
developed an ML-based method that predicts the Rscore values for
every mutation in the WT sequences. We first built a model

specific to each protein and its WT binding site length. To do so,
we used a neural network that receives as input the sequence of a
binding site the same length as the WT sequences (25 nt for PP7-
WT, 19 nt for MS2-WT, and 20 nt for Qβ-WT) and outputs a
single score. We trained a specific network for each of the three
RBP-OL experiments and the two positions where the binding
sites were embedded within the ribosomal initiation region
(Fig. 3a and Supplementary Fig. 4), resulting in a total of six
different models. Such a model preserves the positional infor-
mation for each feature, i.e., the position of each nucleotide in the
WT binding site. To choose the prefix (δ) in which more robust
scores were measured, we looked at the Pearson correlation over a
held-out test set. The correlations for the most robust position
yielded values of 0.27 for PCP with PCP-based sites and δ= C,
0.59 for MCP with MCP-based sites and δ= C, and 0.5 for QCP
with QCP-based sites and δ=GC (Fig. 3b). Interestingly, the
variant group with higher Pearson correlation was also char-
acterized by higher basal mCherry expression levels (Fig. 3c),
which in turn resulted in a higher fold repression effect. Thus,
higher correlation, meaning more robust predictability, correlated
with higher fold-repression, which provided additional validity to
our analysis.

In order to better understand the relationship between binding
site sequence and binding, we developed a protein-specific model
based on the whole library, which we termed whole-library
model. This model, as opposed to our WT-specific model, enables
binding prediction to any site (i.e., of length different than the
WT-site length). The model is based on a CNN and receives as
input nearly all of the oligo library sequences (~17,000). As with
the protein-specific NN-model, we looked at the Pearson
correlation over a held-out test set (Fig. 3b, right) with the
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CNN model and found a significant improvement in Pearson
correlation for PCP, while the correlation for MCP and QCP
remained approximately the same.

We used the whole-library model to analyze the effect of
structure-conserving mutations in each of the WT binding site
sequences (Fig. 3d). We present the ML model’s results as
“binding rules” depicted in illustrations for each of the three
CP binding sites. The schemas represent the predicted change in
responsiveness with respect to the WT sequence for every single-
nucleotide mutation (SNP) in the loop or the bulge region, and
every di-nucleotide mutation (DNP) preserving stem structure in
the stem regions. For instance, in the schema for PCP (Fig. 3d,
top), mutating the bulge from A to C reduces the binding site’s
predicted responsiveness. By contrast, mutating the top base-pair
in the upper stem from a U–A to a C–G, and the bulge from an A
to a U/G are both predicted to increase the responsiveness score
with respect to the WT binding site. A clear characteristic of PCP
is the tolerance to DNPs in the stem regions, which is reflected by
the dominance of the blue colors or light red (indicating a small
reduction in responsiveness with respect to the WT binding sites),
while there are only a few bases where single mutations are found
to abolish binding (e.g., UA portion of the loop). It is important
to note that our results for PCP broadly correlate with past
works23,24,26, which found the loop and the bulge regions to be
critical for PCP binding, while sequence variations in the stems
did not alter binding significantly. For QCP (Fig. 3d, middle), a
significantly different picture emerges. Our results indicate that
the WT sequence we used, as referred to in the literature22,23,25,
has a lower Rscore than many mutated versions of it. The bulge, for
instance, has a higher Rscore with C/G instead of the WT A. The
data seems to indicate that QCP prefers a four nucleotide B-rich
(i.e., C/G/U) stem and a short C/G bulge or loop mini-motif. This
motif is apparent throughout the binding site, as can be seen from
the blue-colored nucleotides of both the lower and upper stems.
For MCP (Fig. 3d, bottom), a tolerance to DNPs in the lower
stem emerges from our analysis, while a strong sensitivity to SNPs
in the bulge, upper stem, and the loop regions is revealed. Past
analysis23,27,34 also highlighted the sensitivity to mutations in the
loop and the bulge regions, indicating that the in vivo environ-
ment does not alter the overall binding characteristics of MCP.

Finally, to provide a sanity check on our structural findings, we
reanalyzed the raw iSort-seq data using an average nearest
neighbor (ANN) approach (see Methods) to calculate a non-
parametrized Rscore. We first computed the cross-correlation
between the non-parametrized and the Gaussian-parametrized
Rscore (Supplementary Fig. 5), and obtained a Pearson correlation
coefficient of ~0.5 between both sets of scores for all three
proteins. We then retrained the whole-library CNN model using
the non-parametrized scores, and obtained Pearson correlation
values on a held-out test set of 0.53, 0.41, and 0.38 for PCP, MCP,
and QCP as compared with 0.44, 0.51, and 0.53, respectively, with
the Gaussian-parametrized Rscore. Next, we recomputed the
binding preferences visualized on the structures as shown in
Fig. 3d (see Supplementary Fig. 6). The figure shows that while
there is some deviation between the structures obtained from
both models, most trends are nevertheless sustained.

RNA-binding structure preferences. To better understand the
relationship between binding site structure and binding, we
extended the CNN model to include structural information
(Fig. 4a). This model, as opposed to our whole-library model,
incorporates both the sequence and secondary structure of the
RNA binding site, as calculated by RNAfold37. All three CNNs
showed improved predictive performance when the structural
data was added into the network (Supplementary Fig. 7).

We used this model to analyze the effect of structure-altering
mutations on protein binding. To do so, we generated various
binding sites with a predefined structure and used the whole-
library models to predict their responsiveness score. Specifically,
we looked at three types of mutations: alteration of upper-stem
length, alteration of loop length, and alteration of bulge size.
Overall, upper-stem length plays a big role in binding affinity for
all three RBPs, though not equally (Fig. 4b, left). PCP seems to be
the most resilient to both shorter and longer upper-stems, while
MCP does not seem to tolerate any upper-stem length which
deviates from the canonical 2 bp. Finally, QCP exhibits some
tolerance to alternative stem lengths, especially by an increase
of 1 bp.

Varying the loop-length suggests increased flexibility for all
three RBPs (Fig. 4b, right). PCP is the most resilient, displaying a
viable binding affinity to loops that range from five to eight
nucleotides in length. MCP is less tolerant, displaying flexibility
only for structures containing loops that are five nucleotides in
length. Finally, QCP shows some tolerance to longer loop lengths,
especially for five nucleotides in length.

Finally, examining the importance of the bulge, a high
variation in tolerance to mutations for the three CPs is observed
(Fig. 4c). PCP can tolerate and even have higher affinity with
sequences that either have no bulge, or a two-nucleotide bulge.
This is depicted by a non-negligible variant density above the 3.5
threshold, and indicates that a bulge is not necessarily needed for
binding. Together, with the SNP analysis depicted in Fig. 3d, it
would seem that PCP can bind structures with a predominantly
G-rich single stem of varying length and a 5–8 nucleotide loop
containing a 3–4 nucleotide U/A segment. MCP, on the other
hand, has negligible tolerance for variants with no bulge, and very
low tolerance for those with a two-nucleotide bulge. This
sensitivity correlates with MCP’s previous structure and sequence
dependencies of the loop and upper stem (Figs. 3d and 4b). QCP
displays some tolerance to both bulge mutations, though much
less than PCP, and thus seem to tolerate some deviation from the
consensus bulge-stem-loop structure.

In summary, the structural analysis indicates that all three
proteins prefer different structures, with some overlap that can
create cross-binding. This is consistent with QCP’s known23,25,33

weak binding affinity to the MS2-WT binding site, and MCP’s
ability to bind Qβ-WT. PCP seems to prefer a structure with an
upper stem of length four base-pairs or longer, a variable loop size
ranging from five to eight nucleotides with some sequence
specificity, and a weak dependence on bulge. MCP is constrained
in both structure and sequence specificity needing a bulge
separating a lower and upper stem, two base-pair upper stem, and
a loop length of four to five nucleotides in length with a conserved
sequence signature. Finally, QCP seems to display a binding
signature consistent with a repeat concatemer of 5-B-rich-stem-
bulge sequence and structural motif.

Validations—new cassettes for RNA imaging. To validate both
our experimental measurements and model predictions, we
compared our results to a previous study that measured high-
throughput in vitro RNA-binding of MCP27. In the study, the
researchers employed a combined high-throughput sequencing
and single-molecule approach to quantitatively measure binding
affinities and dissociation constants of MCP to more than 107

RNA sites using a flow-cell and in vitro transcription. The study
reported ΔG values for over 120k variants, which formed a rich
dataset to test correlation with our measured and predicted Rscore
values. First, we computed Pearson correlation coefficient of the
purely experimental measurements for variants that were both in
our library and in the in vitro study. The result (Fig. 5a, left)
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indicates a positive and statistically significant correlation (r=
0.23). We next predicted Rscore values using the whole-library
model for all the reported variants of the in vitro study (Fig. 5a
left-to-right), and found a strong correlation (r= 0.44) for single-
mutations variants, a moderate correlation (r= 0.4) for double-
mutation variants and a weak correlation (r= 0.17) with the
entire set of 129,248 mutated variants. Given the large difference
between the experiments and the different sets of variants used
(e.g., in vitro vs. in vivo, microscopy-based vs. flow cytometry-
based), the positive correlation coefficients (p-values < 0.0007 for
all reported coefficients) indicate a good agreement for both sets
of experimental data, and a wide applicability for the learned
binding models for MCP.

To examine the wider applicability of the findings, we
generated cassettes containing multiple non-repetitive CP binding
sites identified by our experimental dataset, and tested them in

both bacterial and mammalian cells. Once labeled with a fusion of
the CP to a fluorescent protein, functional cassettes appear as
trackable bright fluorescent foci (Fig. 5b). Initially, we designed
two binding site cassettes based on library variants that were
identified as highly responsive for each CP and tested them in
bacteria: the first with four PP7-WT and five Qβ-WT binding
sites interlaced, and the second with ten QCP binding sites
identified as strongly bound in our library. The cassettes were
cloned downstream of a pT7 promoter on a single copy plasmid
and transformed to E. coli BL21 cells (Fig. 5b, top), together with
a plasmid encoding the corresponding CP (QCP, PCP), which
was fused to mCherry. In addition, we also cloned the state-of-
the-art PP7-24x repeat cassette, which has been used in many
studies38 to provide a benchmark by which to assess our results.
For all cassettes tested, several hours after induction of the T7
RNAP, bright spots began to form in the polar regions of the
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cells; these spots were 2–3 times brighter than the cell background
fluorescence (Fig. 5c). We then measured the mean intensity of
the spots (~100–200 cells for each cassette type). The intensity
distributions (Fig. 5d) show a dependence on cassette size.
Surprisingly, the mean brightness for the Qβx10 cassette was
slightly higher than the mean brightness measured for the PP7x24

despite having less than half the binding sites. In addition, the
mean brightness for the Qβx5 cassette was estimated at ~70% of
the value measured for PP7-24x. Furthermore, the mean intensity
distributions obtained for both the Qβx5 and Qβx10 cassettes
were narrower than the one obtained for the PP7-x24 cassette.
The increased brightness per binding site of the new cassettes and
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21578-6

8 NATURE COMMUNICATIONS |         (2021) 12:1576 | https://doi.org/10.1038/s41467-021-21578-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the narrower distributions are likely related to the sequence
instability of the PP7-24x in vivo, which is encoded by a repeat
DNA sequence.

Next, we designed additional cassettes for validation in
mammalian cells. Each cassette was designed with ten different
binding sites, all characterized by a large edit distance (i.e., at least
5) from the respective WT site and from each other, thus creating
a sufficiently non-repeating cassette that Integrated DNA
Technologies, Inc. (IDT) was able to synthesize in three working
days. In addition, all selected binding sites exhibited non-
responsive behavior to the two other CPs in our experiment.
We cloned the cassettes into a vector downstream to a CMV
promoter for mammalian expression and transfected them into
U2OS cells together with one of the RBP-3xFP plasmids encoding
either PCP-3xGFP, MCP-3xBFP, or QCP-3xBFP. In a typical cell
(Fig. 5e), all three cassettes generated more than five fluorescent
puncta, dispersed throughout the cytoplasm. The puncta were
characterized by rapid mobility within the cytoplasm, and a lack
of overlap with static granules or distinct features which also
appear in the DIC channel (see Supplementary movies 1–3).
Negative control experiments, where CP-3xFP plasmids were
transfected with either an empty plasmid (pUC19) or non-
cognate binding site cassettes, did not show such puncta (Fig. S8
and Supplementary Movie 6).

To expand our claim to orthogonal and simultaneous imaging
of multiple promoters, we ordered two additional cassettes
encoded with MS2 and Qβ variants, respectively, and co-
transfected them with a plasmid encoding both of the matching
fusion proteins: MCP-3xmCherry and QCP-3xBFP (Fig. 5f, left).
For each cassette, the sites were chosen with two constraints: to
minimize repeat sequences, and to maximize orthogonality to the
other CPs (e.g., both MS2-WT and Qβ-WT binding sites were not
included as they exhibit cross-responsiveness and are thus not
orthogonal). In Fig. 5f, right we plot sample cell images depicting
single and double channel views. The images show that both
cassettes produce a spatially distinct set of puncta (Fig. 5f, left and
middle), which can be definitively associated with one of the two
proteins (Fig. 5f, right). This indicates that our binding sites
are sufficiently orthogonal to allow the tracking of more than one
cassette simultaneously. Moreover, there is little difference
between the number of puncta of the two sequences, and
the fluorescent intensity for all puncta seem to fluctuate
unimpeded in all three directions (x, y, and z) inside the cell.
Taken together, the microscopy experiments conducted in
bacterial and mammalian cells demonstrate the universal
applicability of the results obtained from the high-
responsiveness binding sites identified in the OL experiment to
the advancement of RNA imaging in a variety of cell types.

De novo design of dual-binding site cassettes. Finally, we
wished to validate the model’s predictive capability by creating
cassettes with binding sites that did not exist in our experimental
library. We used the whole-library models to predict de novo
functional binding site sequences, which could bind multiple CPs.
To do so, we generated all possible variants with Hamming dis-
tance 3–7 to one of the three WTs. From this set of sequences, we
randomly selected one million sequences and used the models to
predict the responsiveness score for each of the three CPs. In
Fig. 6a, we plot the variant density distribution based on pre-
dicted Rscore values. The plots show that the highest density of
sequences appears at Rscore values that hover around 0 for all
three proteins. The plots further show that there is a bias towards
negative responsiveness values for all three proteins in the com-
puted sequences. This is consistent with having a small region of
sequence space which facilitates specific binding, which, in turn,

is easy to abolish with a small number of mutations. In contrast,
high responsiveness scores are only computed for a small number
of the sequences, as can be seen by the sharp gradient in the
density plot for positive responsiveness values. Finally, each plot
shows a low-density region containing sequences that exhibit a
high responsiveness score for both CPs. These sequences are
predicted to be dual binders.

To test the predictions of the whole-library models experi-
mentally, we designed another 10× binding site cassette (Fig. 6b),
where each binding site was selected from the set of predicted
sequences whose responsiveness scores for QCP and PCP were
both above 3.5 (see dashed square in Fig. 6a, left panel).
Therefore, we expected the cassette to generate fluorescent foci
when bound by either QCP or PCP. As before, we cloned the
cassette into a vector downstream of a CMV promoter for
mammalian expression and transfected it into U2OS cells
together with a plasmid encoding either PCP-3xGFP or QCP-
3xBFP. In Fig. 6c, we plot fluorescent and DIC images for PCP
(left) and QCP (right), depicting bright fluorescent foci that are
located outside of the nucleus and which do not overlap with a
DIC feature. The plots show distinct puncta observed with both
relevant RBPs, confirming the dual binding nature of the cassette.
An additional cassette containing predicted PP7 sites also
presented mobile fluorescent foci when tested in a similar
manner with PCP-3xGFP (Supplementary Fig. 9 and Supple-
mentary Movie 7). Consequently, these images support our
model’s ability to accurately predict MCP, PCP, and QCP binding
sequences with known function with respect to all three RBPs.

Discussion
In this study, we adapted our previously developed binding assay
for quantifying CP binding site affinity in vivo to a high-
throughput OL platform in bacteria23,32. We were inspired by the
need to develop approaches for understanding RNA–protein
interactions. It is generally believed that the combinatorial nature
of RNA sequence and its intramolecular interactions lead to high
complexity, making simulations based on biophysical models a
difficult task with limited degree of success37,39–41. As a result,
little is known about the evolutionary constraints on RNA
structures, making bioinformatic identification of functional
RNAs difficult27. Moreover, recent advances in OL analysis have
shown that by generating a sufficiently large experimental dataset,
and subsequently using it to train a ML model, biological insights
into transcriptional regulation can be obtained10–12. Given these
recent advances, we hypothesized that an OL-ML approach could
generate insights into in vivo characterization of protein–RNA
binding as well. We chose to test our hypothesis on phage CPs,
which on the one hand corresponds to a classic model system for
RNA–protein interactions, while on the other hand constitutes an
important biomolecular tool for various biological imaging
applications.

Using the OL-ML approach, we experimentally identified
several thousand functional binding sites for the phage coat
proteins of PP7, MS2, and Qβ. This dataset, in turn, was used to
train a ML model, which allowed us to quantitatively assess the
in vivo sequence and structural binding space of the three phage
CPs to RNA. Based on the model and data, we found that each
CP occupies a different sequence and structural space, with some
overlap. Using this broader binding characterization, we con-
cluded that the WT binding site for QCP is sub-optimal, and that
dual-binding binding sites such as Qβ-WT (QCP and MCP) or
MS2-WT (MCP and QCP) are the exception rather than the rule,
which in turn provide the community with a third orthogonal CP
channel (QCP) for various imaging or genome-editing applica-
tions. Furthermore, we demonstrated that the dataset of single
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RNA binding sites obtained in bacteria is sufficient for training a
model, which can generate synthetic long non-coding RNAs
(slncRNA), that were functional in mammalian cells. This is
evidence that, at least for this set of proteins, the RNA-RBP
module can accommodate multiple cellular environments, thus
constraining the complexity of the overall system. Consequently,
our work paves the way for characterizing and predicting the
binding of additional RBPs, in addition to validating the utility of
the OL-ML approach to RNA-related problems.

In addition to providing a deeper characterization of the
sequence and structural determinants of CP binding to RNA, we
were also inspired by the need to solve an important technological
bottleneck that has hindered progress in the use of CP-based
synthetic constructs for various questions in biology. As a result
of this work, we now provide the community with a computa-
tional tool that allows for rapid design, synthesis, and evaluation
of CP-binding slncRNA molecules that do not contain sequence

repeats. The elimination of sequence repeats will also remove
many of the previous restrictions associated with these systems,
such as the need for repetitive cloning cycles, repeat-based
structure formation, and limitation on the number of functional
binding sites. In total, these achievements provide the community
with a reliable design tool that can integrate both experimentally
verified and predicted binding sites for phage CP binding cas-
settes in a variety of organisms.

Finally, together with other recent studies10–13, our work
provides another example for the potential utility of the OL-ML
approach for deciphering biomolecular mechanisms. In our case,
several thousand variants generated a Pearson correlation of ~0.5,
which is a poorer result when comparing with other recent OL-
ML studies (Pearson correlation ~0.8). However, despite this
result, we were still able to generate a reliable predictive algorithm
for CP-binding slncRNA design. Moreover, correlations obtained
by our model on an independent dataset of in vitro measurement
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Fig. 6 De novo design of dual-binding site cassettes in U2OS cells. a 2D density plots (pink-red scale) depicting the predicted Rscore values for one million
ML variants binding to (left-to-right): PCP and QCP, MCP and QCP, and MCP and PCP. QCP-PCP dual-binding variants are located in the black dashed
square. b Based on the dual-binding mutants for QCP and PCP from our model predictions, we designed an additional cassette. c Results for the dual-
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relevant fluorescent channel and the merged images with the DIC channel are presented. Each of the two experiments were successfully conducted in
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of MCP were also in the range of ~0.5. On the computational
side, we found that searching hyper-parameters in cross-
validation (3 folds in our case, as in DeepBind), and testing
tens of random sets (25 in our case) optimized performance in
finding a robust set of hyper-parameters that were neither over-
fitted to one fold, nor too far from the optimal hyper-parameters
set. Thus, a Pearson correlation of 0.5 seems to be a sufficiently
good indicator, at least for our system. The discrepancy in
Pearson correlation between our work and the previous studies
can be attributed to two major differences. The first is likely due
to having only a limited set (several thousand per CP) of positive
variants by which to train the model. Indeed, more data is
expected to increase the predictive power of our models (Fig. 6d).
The second is rooted in the fact that using different ML strategies
and introducing RNA secondary structural interactions (Supple-
mentary Fig. 7) did not yield an improvement in the Pearson
correlation beyond this range. This may be indicative of an
insufficient understanding of the underlying thermodynamic
constraints, which guide RNA folding and its interaction with
CPs. Consequently, at the present time, it is impossible to tell
whether a Pearson correlation of 0.5 is typical or “surprisingly”
small for RNA systems. Future work on other complex RNA-
based molecular interaction systems will determine whether the
OL-ML approach will indeed prove to be a useful tool for pro-
viding both mechanistic and structural insights, and a source
of data for formulating reliable design algorithms in synthetic
biology.

Methods
Construction of the oligo library. We designed 10,000 mutated versions of the
WT binding sites of the phage CPs of PP7 (Fig. 1 and Fig. S1), MS2 and Qβ, and
positioned them at two positions within the ribosomal initiation region. Each of the
designed 10k sites was positioned either one or two nucleotides downstream to the
mCherry start codon, resulting in 20k different configurations. We then ordered
the following OL from Agilent: 100k oligos (Supplementary Data 1), each 210 bp
long, containing the following components: BamHI restriction site, barcode (five
for each variant, see Supplementary Data 5), constitutive promoter (cPr), ribosome
binding site (RBS), mCherry start codon, one or two bases (denoted by δ), the
variant binding site, ~60 bp of the mCherry gene, and an ApaLI restriction site. We
then cloned the OL using restriction-based cloning strategy. Briefly, the 100k-
variant ssDNA library from Agilent was amplified in a 96-well plate using PCR (see
Supplementary Data 2 for primers), purified, and merged into one tube. Following
purification, dsDNA was cut using BamHI-HF and ApaLI (New England Biolabs
[NEB]) and cleaned. Resulting DNA fragments were ligated to the target plasmid
containing an mCherry open reading frame and a terminator, and a kanamycin
(Kan) resistance gene, using a 1:1 ratio. Ligated plasmids were transformed to E.
cloni® cells (Lucigen) and plated on 37 large agar plates with Kan in order to
conserve library complexity. Approximately two million colonies were scraped and
transferred to an Erlenmeyer for growth. After O/N growth, plasmids were
extracted using a maxiprep kit (Agilent), their concentration was measured, and
they were stored in a microcentrifuge tube in −20 °C.

Construction of RBP–GFP fusions. RBP sequences lacking a stop codon were
amplified via PCR off either Addgene or custom-ordered templates (Genescript or
IDT, see Supplementary Data 3). MCP, PCP, and QCP were cloned into the RBP
plasmid between restriction sites KpnI and AgeI, immediately upstream of a GFP
gene lacking a start codon, under the pRhlR promoter (containing the rhlAB las
box38) and induced by N-butanoyl-L-homoserine Lactone (C4-HSL, Cayman
Chemical). The backbone contained an ampicillin (Amp) resistance gene. The
resulting fusion-RBP plasmids were transformed into E. coli Top10 cells. After
Sanger sequencing, positive transformants were made chemically competent and
stored at −80 °C in 96-well format.

Double transformation of OL and RBP–GFP plasmids. Note: the following two
sections were conducted three times, one for each of the RBP–GFP fusions.

OL DNA was transformed into ~300 chemically competent bacterial cell in
100 μl aliquots containing one of the RBP-GFP plasmids in 96-well format. After
transformation, cells were grown in 2 L liquid Luria Broth (LB) with twice the
concentration of the antibiotics—Kan and Amp—overnight at 37 °C and 250 rpm.
After growth glycerol stocks were made by centrifugation, re-suspension in 30 ml
LB, mix 1.2 ml with 400 μl 80% glycerol—20% LB solution and stored in −80 °C.

Induction-based Sort-seq OL assay. One full glycerol stock of the library was
dissolved in 500 ml of LB with Amp and Kan and grown overnight at 37 °C and
250 rpm. In the morning, the bacterial culture was diluted 1:50 into 100 ml of semi-
poor medium consisting of 95% bioassay buffer (BA: for 1 L—0.5 g Tryptone
[Bacto], 0.3 ml glycerol, 5.8 g NaCl, 50 ml 1M MgSO4, 1 ml 10×PBS buffer pH 7.4,
950 ml DDW) and 5% LB. The inducer C4-HSL was pipetted manually to a final
concentration of one out of six final concentrations: 0 μM, 0.02 μM, 0.2 μM, 2 μM,
20 μM, and 200 μM. Cells were grown at 37 °C and 250 rpm to mid-log phase
(OD600 of ~0.6) as measured by a spectrophotometer and taken to the FACS for
sorting.

During sorting by the FACSAria II (BD Biosciences) cell sorter, each inducer
level culture was sorted into eight bins of increasing mCherry levels spanning the
entire fluorescence range except for 5% at the higher end (bin 1—low mCherry to
bin 8—high mCherry), and constant GFP levels (for example, the 0 mM culture
were sorted according to zero GFP fluorescence, the 0.02 μM culture to slightly
positive GFP fluorescence, and so on). Sorting was done at a flow rate of ~20,000
cells per second. 300k cells were collected in each bin for the entire 6 × 8 bin
matrix. After sorting, the binned bacteria were transferred to 10 ml LB+ Kan+
Amp growth culture and shaken at 37 °C and 250 rpm overnight. In the morning,
cells were prepared for sequencing (see below) and glycerol stocks were made by
mixing 1 ml of bacterial solution with 500 μl 80% glycerol—20% LB solution and
stored in −80 °C.

Sequencing. Cells were lysed (TritonX100 0.1% in 1×TE: 15 μl, culture: 5 μl, 99 °C
for 5 min and 30 °C for 5 min) and the DNA from each bin was subjected to PCR
with a different 5’ primer containing a specific bin-inducer level barcode (see
Supplementary Data 5). PCR products were verified in an electrophoresis gel and
cleaned using PCR clean-up kit. Equal amounts of DNA (2 ng) from 16 bins were
joined to one 1.5 ml microcentrifuge tube for further analysis, to a total of three
tubes. This procedure was conducted three times, one for each RBP-GFP fusion.

Each one of the three samples were sequenced on an Illumina HiSeq 2500 Rapid
Reagents V2 50 bp 465 single-end chip. 20% PhiX was added as a control. This
resulted in ~540 million reads, about 180 million reads per RBP.

Bacterial cassette microscopy experiments—Addgene plasmids. pCR4-
24XPP7SL was a gift from Robert Singer (Addgene plasmid #31864; http://n2t.net/
addgene:31864; RRID: Addgene_31864).

Bacterial sample preparation for microscopy. E. coli BL21-DE3 cells expressing
the two plasmid systems (a single copy plasmid containing the binding site cassette,
and a multicopy plasmid containing the RBP-GFP) were grown overnight in 5 ml
LB, at 37 °C with appropriate antibiotics (CM, Amp), and in the presence of two
inducers—1.6 μl isopropyl β-D-1-thiogalactopyranoside (IPTG) (final concentra-
tion 1 5 mM), and 2.5 μl C4-HSL (final concentration 60 μM) to induce expression
of T7 RNA polymerase and the RBP-FP, respectively. Overnight culture was
diluted 1:100 into 3 ml solution of (BA-LB (95%–5% v-v) with appropriate anti-
biotics and induced with 1 μl IPTG (final concentration 1 mM) and 1.5 μl C4-HSL
(final concentration 60 μM). For stationary phase tests, cells were diluted into 3 ml
Dulbecco’s phosphate-buffered saline (PBS) (Biological Industries, Israel) with
similar quantities of induction and 10 antibiotics. Culture was shaken for 3 h in
37 °C before being applied to a gel slide (3 ml PBS×1, mixed with 0.045 g SeaPlaque
low melting agarose (Lonza, Switzerland), heated for 20 s and allowed to cool for
25 min). 1.5 μl cell culture was deposited on a gel slide and allowed to settle for an
additional 30 min before imaging.

Bacteria microscopy and analysis. Gel slide was kept at 37 °C inside an Okolab
microscope incubator (Okolab, Italy). Excitation was performed at 585 nm
(mCherry) wavelength by a CooLED (Andover, UK) PE excitation system.
10–15 snapshots of different fields of view (FOV) containing cells were taken for
each experiment. Intensity distributions were measured using a custom Matlab
(Mathworks, Natick, MA) script.

Construction of mammalian expression plasmids. We ordered three plasmids
from Addgene containing PCP-3xGFP (#75385), MCP-3xBFP (#75384), and N22-
3xmCherry (#75387), and used them to create the following two plasmids: MCP-
3xmCherry and QCP-3xBFP (Addgene #158206). In brief, using two restriction
enzymes, BamHI and Mlul, we restricted the plasmids and conducted PCR with the
same restriction sites added as primers on both MCP and QCP. After PCR pur-
ification, we restricted the product with the same two enzymes and ligated them to
the matching plasmids. Then, we performed transformation to Top10 E. coli cells
(Lucigen) and screened for positive clones. All plasmids used in the microscopy
experiments were sequence-verified via Sanger sequencing.

RNA binding site cassettes were ordered from IDT as gBlocks (see
Supplementary Data 4 for sequences). We restricted and ligated them to a vector
downstream of a CMV promoter using the restriction enzyme EcoRI. Then, we
performed transformation to Top10 E. coli cells and screened for positive clones.
All plasmids used in the microscopy experiments were sequence-verified via Sanger
sequencing, and are available at Addgene (see Supplementary Data 4).
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Mammalian microscopy assay. The human bone osteosarcoma epithelial cell line
(U2OS, from ATCC) was incubated and maintained in 100 × 20 mm cell culture
dishes under standard cell culture conditions at 37 °C in humidified atmosphere
containing 5% CO2 and was passaged at 80–85% confluence. Cells were washed
once with 1× PBS, and subsequently treated with 1 mL trypsin/EDTA (ethylene-
diaminetetraacetic acid, Biological Industries) followed by incubation at 37 °C for
3–5 min. DMEMcomplete, complemented with 10% FBS and final concentrations
of 100 U penicillin plus 100 μg streptomycin, was added and transferred into fresh
DMEMcomplete in subcultivation ratios of 1:10.

Before the experiment, U2OS cells were seeded on 60 mm glass-bottom imaging
dishes. Transient transfection was performed with Polyjet (Invivogen) transfection
reagent according to the manufacturer’s instructions. Typical DNA for transfection
was 150 ng from RBP-3xFP and 850 ng from the cassette plasmid. After inoculation
for 24–48 h, the growth medium was removed and replaced with Leibovitz L15
medium with 10% FBS. During microscopy, the sample was kept at 37 °C.

Microscopy was carried out on a Nikon Ti-E eclipse epifluorescent microscope.
Images were taken with a ×40 oil immersion objective and the following excitation
lasers: 585 nm for mCherry, 490 nm for GFP, 400 nm for BFP. The images were
recorded with the Xion EMCCD camera. The microscope was controlled with NIS
Elements imaging software. Time-lapse movies of a single Z-plane were recorded
with 1500 ms exposure time and time intervals between frames were 30 s.

Computing the responsiveness score. Note: the following analysis procedure was
conducted three times, once for each CP. Read numbers were normalized by
percentage of bacteria in each bin from the total library, given by the FACS during
sorting. This is done to enable comparison between numbers of reads of the same
variant in different bins.

Nreads i; j; k
� � ¼ Rreads i; j; k

� �
´%cells j; k

� �
;

i ¼ 1 : 100; 000

j ¼ 1 : 6

k ¼ 1 : 8

ð1Þ

where Nreads(i,j,k) and Rreads are the number of normalized and raw reads per
variant, bin, and inducer concentration, respectively. %cells(j,k) corresponds to the
percentages of the cells in each bin per inducer concentration during sorting from
the entire library as supplied by the sorter.

Two cut-offs were introduced on the variant read counts: (i) only inducer levels
that had above 30 reads for all eight bins were taken into account; and (ii) only
variants that had more than 300 reads in total for the entire 6 × 8 matrix were taken
into account. For each inducer concentration j, we have an 8-bin histogram for
which we need to calculate the mCherry averaged fluorescence of variant i μ(i,j) for
all variants. First, for every variant we renormalize Nreads by the total number of
reads obtained for that inducer level (each column in the read matrix and color bar,
Fig. S2a, top).

~Nreads i; j; kð Þ ¼ Nreads i; j; kð ÞP8
k¼1 Nreads i; j; kð Þ ;

i ¼ 1 : 100; 000

j ¼ 1 : 6

k ¼ 1 : 8

ð2Þ

Next, we convert the bin index (j= 1:8) to mCherry fluorescence (Bin(i,j,k)).
This is done by retrieving the maximum mCherry fluorescence value that was
assigned to each bin by the sorter. Then, we compute the cumulative renormalized
reads by adding all the normalized reads successively from the lowest to the highest
fluorescent bin as follows:

~Ncum
reads i; j; kð Þ ¼

Xk
l¼1

~Nreads i; j; lð Þ;
i ¼ 1 : 100; 000

j ¼ 1 : 6

k ¼ 1 : 8

ð3Þ

Finally, to compute μ(i,j), we fit the cumulative renormalized read values to a
cumulative Gaussian as follows:

~Ncum
reads i; j; kð Þ ¼ 0:5þ 0:5erf

Bin i; j; kð Þ � μ i; jð Þ
σ i; jð Þ ffiffiffi

2
p

� �
;

i ¼ 1 : 100; 00

j ¼ 1 : 6

k ¼ 1 : 8

ð4Þ

where σ(i,j) is the standard deviation for mCherry fluorescence extracted from the
fitting procedure (see Fig. S2a, bottom for sample calculation). Note that only
induction levels that had a goodness of fit higher than 0.5 were taken into account
in the final analysis. Since each inducer concentration experiment was carried out
in different conditions (e.g., duration of incubation on ice, O/N shaking, binning
time) and at a different time (different days), mCherry levels assigned for each bin
varied greatly as a function of experiment as well as overall fluorescence recorded.
Therefore, to quantify this systematic error, we first computed a normalized mean
fluorescence level (μnorm) per variant as follows:

μnorm i; jð Þ ¼ μ i; jð Þ
max μ i; jð Þ; j ¼ 1 : 6f g ;

i ¼ 1 : 100; 000

j ¼ 1 : 6
: ð5Þ

To ascertain the scope of the problem presented by the systematic error, we plot
in Fig. S2b a heat-map of μnorm values consisting of 3,000 variants for PCP. Here,
low fluorescence was recorded for induction levels 1, 4, and 6, while higher levels
were recorded for induction levels 2, 3, and 5, respectively. These results are

consistent with the fact that the induction experiments of level 1, 4, and 6 were
carried out on the same day, while those of 2, 3, and 5 on a separate day.

Next, to accommodate for these systematic discrepancies in our data, for each
inducer level we extracted the μnorm for all the negative control variants that were
introduced into the OL (220 variants for PCP, 160 variants for MCP and QCP). We
then computed the average μnorm for all negative controls per inducer level to
obtain μneg(j). Finally, we rescaled all μnorm(i,j) values by μneg(j) to eliminate the
systematic error from the average fluorescence level as follows:

~μnorm i; jð Þ ¼ μnorm i; jð Þ
μneg jð Þ ;

i ¼ 1 : 100; 000

j ¼ 1 : 6
: ð6Þ

Figure S2c shows that this rescaling operation successfully compensated for the
systematic error. Note, that since the experiment is based on detecting a repression
effect as a function of inducer, we filtered out the variants that displayed averaged
mCherry levels at the three lowest concentrations below 15% of the averaged
mCherry levels at the three lowest concentrations of the positive control.

To characterize binding to our variants, we compute an empirical score to
quantify how similar a given variant’s mCherry levels were to either the positive or
negative controls. The score, termed the responsiveness score (Rscore), is
proportional to the binding affinity Kd (see below) provided that the Rscore obtained
for the various negative and positive controls are distributed in a Gaussian fashion.
Quantile-quantile (QQ) plots for testing how our positive and negative controls fit
to a Gaussian distribution are presented in Fig. S10.

To derive an expression for the Rscore, we first compute two n-dimensional
probability density functions defining the probability in an n-dimensional space to
find either the CP binding or non-binding positive and negative controls,
respectively. The parameters were selected according to the maximum likelihood
criterion.

pdf pos; nð Þ ¼
exp � 1

2 ~μnorm pos; nð Þ �mean ~μnorm pos; nð Þ� �� �T
Σ�1 ~μnorm pos; nð Þ �mean ~μnorm pos; nð Þ� �� �� �

p 2πð Þ3 Σj j
pos ¼ positive controls

n ¼ n1; n2; ¼ ; nN

ð7Þ

pdf neg; nð Þ ¼
exp � 1

2 ~μnorm neg; nð Þ �meanð~μnorm neg; nð ÞÞ� �T
Σ�1 ~μnorm neg; nð Þ �meanð~μnorm neg; nð ÞÞ� �� �

p 2πð Þ3 Σj j ;

neg ¼ negative controls

n ¼ n1; n2; ¼ ; nN

ð8Þ
Where the set {nj} corresponds to N independent parameters by which one can
describe the fluorescence measurement of each variant, and

P
is the covariance

matrix. For example, one such set is the six-dimensional set corresponding to the
fluorescence measurements for each inducer level.

Using these probability density functions, we can compute the probability that
an n-dimensional vector i belongs to each of these distributions, as follows:

p i; posð Þ � p ~μreg i; nð Þjpdf pos; nð Þ
� �

p i; negð Þ � p ~μreg i; nð Þjpdf neg; nð Þ
� � ; ð9Þ

which allows us to define the responsiveness score (Rscore) as follows:

Rscore ið Þ � log
p i; posð Þ
p i; negð Þ
� �

ð10Þ
A higher Rscore indicates a more likely grouping to the CP binding positive

control, while a lower score indicates a more likely grouping to the non-binding
negative control.

In the analysis carried out in this paper, we chose to reduce the parameter space
to a 3-dimensional space consisting of the following components: the slope (m) and
goodness of fit (R2) to a simple linear fit of the rescaled fluorescence ~μnorm i; jð Þ to
inducer concentration values. The third component is the standard deviation (std)
of ~μnorm i; jð Þ computed at the three highest concentration induction bins. We term
this vector:

~μnorm i; jð Þ; i ¼ 1 : 100; 000

j ¼ 1 : 6

	 

! ~μreg i; nð Þ; i ¼ 1 : 100; 000

n ¼ m;R2; std

	 

ð11Þ

Based on the 3-dimensional space (R2, m, and std) we conducted a multivariant
Gaussian fit for the positive and negative control populations (Fig. 2), which in turn
allowed us to compute the 3-dimensional pdf(pos,n) and pdf(neg,n). Finally, we
computed the Rscore for each non-control variant by averaging the score over as
many barcodes which passed our filters (each variant appeared in our library 5
times). The results of this computation are presented in the heatmaps of Fig. 2 and
Fig. S3, which are arranged in accordance with decreasing Rscore. Up to this point,
we have developed the Rscore to sort the different variants, but did not dive into
what it means physically or from a binding perspective. The approach relied on
mapping the behavior of the positive binding controls and non-binding negative
controls in some 3-dimensional parameter space, and computing the likelihood
that a given variant would belong to one or the other group. The Rscore is the log of
the ratio of the two computations. In principle, Rscore can be computed from any
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number of probability density functions. We could have used the original 6D space
consisting of the 6 inducer concentrations, or chosen any other combination. In the
computation below, we will map the 6D space to a 1D space of binding affinities
that can be in principle computed from each 6-vector using a Hill function fit. In
the case of such a mapping, we can replace eqn. 7 and 8 in the paper with the
following terms:

pdf pos; nð Þ ¼ 1
σpos

p2π exp � 1
2

Kn
d�Kpos

d
σpos

� �2� �
;
pos ¼ positive controls

n ¼ n1; n2; ¼ ; nN

pdf neg; nð Þ ¼ 1
σneg

p2π exp � 1
2

Kn
d�Kneg

d
σneg

� �2� �
;
neg ¼ negative controls

n ¼ n1; n2; ¼ ; nN

ð12Þ

In such a case, the probability for a given variant to have a Kd similar to the
positive and negative control distributions is given by:

p i; posð Þ � p Ki
djpdf pos; nð Þ� �

p i; negð Þ � p Ki
djpdf neg; nð Þ� � ð13Þ

We can then compute Rscore(i) similar to Eq. 10 in the following manner:

Rscore ið Þ ¼ log
σneg
σpos

 !
exp � 1

2

Ki
d � Kpos

d

σpos

 !2

þ 1
2

Ki
d � Kneg

d

σneg

 !2 !" #
ð14Þ

If we assume for simplicity that σpos~σneg~σ we get:

Rscore ið Þ ¼ Kpos
d � Kneg

d

σ2
Ki
d þ

Kneg
d

� �2� Kpos
d

� �2
σ2

ð15Þ

which implies that the Rscore(i) for a given variant is proportional to its Kd.
Finally, we note that the expressions derived in equations 14 and 15 have the

following general form to a reasonable first approximation:

Rscore ið Þ ¼ aþ bKi
d þ O Kn

d

� �2� �
ffi aþ bKi

d ð16Þ
This then allows us to convert any Rscore value to binding affinity provided that we
have a reasonable approximation of a and b.

Given the fact that:

ΔG ¼ �kBT lnKd; ð17Þ
the binding energy can be estimated from Rscore values. We next used a previous
study17, which derived the ΔΔG for MCP with over 100k variants, 609 of them
were present in our OL variants. We screened for the high affinity variants by
setting thresholds of ΔΔG >−6.667 and Rscore > 3.5, which left us with 37 data
points. In order to derive the ΔΔG for PCP and QCP using the same equation, we
normalized the Rscore values by the mean calculated value for the MS2-WT strain.
We then implemented a linear regression, as presented in Fig. S11, and derived a
and b. Using these values, we were able to calculate ΔΔG for every high-affinity
variant with all three RBPs. The results of this computation are given in
Supplementary Data 1.

ΔΔG ið Þ ¼ ln

R:scoreðiÞ
R:scoreðwtÞ � a

b
; i ¼ 1 : 100; 000 ð18Þ

In order to validate the Gaussian-parametric approach in our analysis, we retraced
our steps and carried out a simple non-parametrized computation, called average
nearest neighbor (ANN). In this case, each variant is characterized by a 6-
dimensional vector representing the mean mCherry fluorescence for six inducer
concentrations. For each variant, we then computed the average squared Euclidean
distance in a 6-dimensional space from the positive and negative control variants,
respectively, as follows:

Skpos ¼ 1
Npos

PNpos

i¼1

P6
j¼1 xkj � xij

� �2
Skneg ¼ 1

Nneg

PNneg

i¼1

P6
j¼1 xkj � xij

� �2 ð19Þ

where, xkj corresponds to the jth inducer concentration (varying from 1 to 6) of the

kth variant, xij corresponds to the jth inducer concentration of the ith positive or
negative controls variants. Npos and Nneg correspond to the number of positive and

negative control variants, respectively. Skpos and Skneg correspond to the average
squared Euclidean distance of a variant k to the positive and negative control
variants, respectively. We then took the logarithm of the ratio of the average
squared distances (negative to positive controls—to ensure values that can correlate
with parametrized Rscore) to obtain a non-parametrized responsiveness score for
the kth variant.

RANN
score kð Þ � log

Skneg
Skpos

 !
� ð20Þ

Machine learning. We developed two types of models to predict the binding
preferences, represented as the responsiveness score, of the three CPs: WT-specific
and whole-library. Here, we will describe in detail the models, the choice of hyper-
parameters, their training on experimental data, and evaluation on a held-out test
set. First, we will cover the features common to the two models. Then, we will
provide details relevant to each of the two model types separately. The dataset
contains Rscore of three proteins (MCP, PCP, and QCP) to ~17,000 sequences
(PCP 17,177, MCP 17,213, QCP 16,041, and 12,245 in the intersection of the
three). All sequences were either a variant of a known WT binding site of one of
the three proteins or a non-similar sequence that was used as control (PCP 42,
MCP 40, QCP 38). The edit distance of the derived sequences from their WT
mostly span 4–8 mutations or indels (Fig. S1). The binding intensity score (Rscore),
empirically spanned the range of −281 to 47. Each sequence has a positional
feature, which defines its prefix and suffix, i.e., upstream and downstream flanking
sequences, respectively. The prefix is either C or GC and the corresponding suffix
is one out of three options: T, CT or no suffix. The choice of suffix is done in a way
that guarantees no shift in the reading frame. To provide the sequence data as
input to the computational framework we used, it first needs to be transformed to
numerical values. Each sequence was encoded using a traditional one-hot
encoding of the sequence. Each nucleotide is converted to a four-bit vector with
one bit set in the position corresponding to that nucleotide and all other positions
set to zero. This way an L-long sequence is transformed into a 4xL binary matrix.
L is either the WT length in the WT-specific model or 50 in the whole-
library model.

We partitioned the dataset randomly into a training set (80%) and a held-out
test set (20%). Then, we performed a hyper-parameters search and model training
on the training set. We evaluated the trained model on the held-out test set. We
used two measurements to gauge model performance: Pearson correlation and area
under the receiver operating curve (AUC). Pearson correlation measures the linear
agreement between two vectors, and is a common measure to evaluate intensity
prediction. AUC is a common measure to evaluate the classification of positive and
negative data points. We defined positive (i.e., binding) sequences as those having a
binding intensity greater than 3.5, and negatives as those having intensity smaller
than 3.5. This threshold was computed as the averaged Rscore of non-zero positive
control variants minus one standard deviation:

Pos: control thershold ¼P3
1 mean

�
Rscore

�
poscontrol; i

��
� σ
�
Rscore

�
poscontrol; i

��
3

; i ¼ PCP;MCP;QCP

ð21Þ
We followed the hyper-parameters search and model training procedures as

described in the DeepBind study42. First, we selected the set of hyper-parameters
using 3-fold cross-validation on the training set (80% of the data). We iterated over
25 randomly selected sets of hyper-parameters from the parameter space defined
for each model type (Tables 1 and 2). For each random set we performed 3-fold
cross-validation on the training set. From the 25 hyper-parameters sets, we selected
the set achieving maximum average Pearson correlation between predicted and
measured scores of the validation fold over the 3 folds. Then, the model was trained
using the selected hyper-parameters set on the training set. The final reported
model evaluation is performed on the remaining 20% of the data, which serve as a
held-out set not used in either the hyper-parameters search or model training. This
process of parameters selection was done for each protein and for each of the
models separately. For the downstream analyses performed in this study, i.e.,
predictions on independent datasets and for structural analysis and cassette design,

Table 1 Hyper-parameters search space for WT-specific model.

Parameter space Final parameters (protein, prefix)

Parameter Initial space MCP-C MCP-GC QCP-C QCP-GC PCP-C PCP-GC

Nodes 5–50 15 30,30 20 25 30,30 10
Layers 1–3 1 2 1 1 2 1
Activation function Identity, tanh, relu tanh relu relu relu relu relu
Epochs 20,30..100 100 30 90 70 30 50

(Left) The search space of the hyper-parameters search. (Right) The hyper-parameters of the final models.
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we used a model trained and with hyper-parameters selected by 3-fold CV on the
entire dataset. These processes are summarized in Fig. S12.

WT-specific binding model. We first tackled the challenge of developing a model
based on a WT and its variants of the same length. For this aim, we used a different
subset of the data for each protein. The protein-specific subset contained only the
sequences that have the same length as its WT binding site (MS2—19 nt, Qβ—
20 nt, PP7—25 nt). Then, we split the subset again by the prefix of the sequence
(C or GC). The rationale for the second split is the low correlation in binding
intensities observed between δ= C and δ=GC positions (Fig. S4). This process is
summarized in Fig. 3a.

Each WT-specific model is composed of 1–2 hidden layers with 10–40 nodes
and one output layer with a single node (Fig. 3a). Each protein and its sub-library
have different parameters that were chosen specifically for it. This optimization
process was done as described above. The details of the parameters we examined
are described in Table 1. In addition to the parameters in Table 1, which are unique
to each WT-specific model, there are additional parameters that are common to all
of them: learning rate 0.001 (default), batch size 8, optimizer ADAM, loss function
MSE (mean squared error) and dropout probability of 0.2 for each hidden layer.
The output layer consisted of one node with the identity activation function.

Overall, our WT-specific models achieved good prediction performance, i.e., a
Pearson correlation between 0.27 and 0.59 on a held-out test set (Fig. 3b). As
explained before, the sub-library of each RBP was divided in to two sub-libraries
based on its prefix. We performed hyper-parameters optimization for each of the
two sub-libraries and tested it on a held-out test set. For QCP a higher correlation
was achieved for δ = GC, while for PCP and MCP it was achieved for δ = C.

Whole-library binding model. We next developed a protein-specific binding
model based on the whole-library of RNA sequences and their responsiveness
scores. Since the binding sites have different lengths, they need to be converted to
have equal lengths for the learning process. All sequences were padded to the same
length of 50 nt. The binding sites were part of an RNA transcript. Hence, we
upstream-padded them with the flanking 9 or 8 nt followed by C or GC prefix
(respectively) according to their position; overall 10 nt were added upstream.
Downstream-padding of the sequences was done by their flanking transcriptomic
context up to a full length of 50 nt.

The upstream nucleotides are:
AATTGTGAGCGCTCACAATTATGATAGATTCAATTGGATTAATTAAA

GAGGAGAAAGGTACCCATG.
The downstream nucleotides are:
GTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCAT

GCGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTCGA
GATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGC
CAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATC
CTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACC.

The padding of the binding sites does not invalidate the models. Since these flanks
are constant, and the first layer of the model is a convolution layer, which extracts
local sequence features, they do not have any impact on model performance.

For the whole-library binding model, we augmented the one-hot encoded
sequence information by RNA secondary structure information. We used RNAfold
algorithm (Vienna package37) to predict the structure of each sequence. The input
to RNAfold is the binding site, and it outputs the predicted secondary structure in
parenthesis notation, i.e., opening and closing parenthesis for base-pairs and a dot
for unpaired nucleotide.

We converted this notation into an encoding of RNA structural contexts. This
was done by a MATLAB script that encodes the RNA structure as a one-hot matrix
with one bit set in each column for the corresponding structural context. For a
binding site of length n, the n-long parenthesis annotation is transformed to a 5xn
binary matrix. The structural contexts we used were lower stem (LS), bulge (B),
upper stem (US), loop (L), and no-hairpin (N). The one-hot encoded structure
matrix outside of the binding site was set to zero. The RNA structure matrix was
concatenated to the sequence matrix (Fig. 4a). In total, for a sequence of length L,
this results in a binary matrix of size (4+ 5)xL.

The model is composed of one convolution layer, one hidden layer, and an
output layer (Fig. 4a). The optimization of the model was done in the same manner
as described above. Briefly, 25 random hyper-parameters sets were tested, and the
best performing one in 3-fold cross-validation on the training set was chosen as the
optimal one.

In addition to the parameters in Table 2, which are unique to each whole-library
model, there are additional parameters that are common to all of them: learning
rate 0.001, batch size 16, optimizer ADAM, loss function MSE (mean squared
error), activation function for the convolution and hidden layers is “relu”. The
output layer consists of one node with the identity activation function.

The prediction performance achieved by the whole-library models are similar to
the WT-specific ones, i.e., a Pearson correlation on a held-out test set greater than
0.44 for each of the three proteins (Fig. 3b). The performance as a binary classifier
(motivated by the downstream application of generating non-repetitive binding site
cassettes) was an AUC greater than 0.59 (Fig. S7a, empirical p-values reflecting the
frequency of AUC values of random shuffles greater than the ones achieved were
smaller than or equal to 10−3). In addition to achieving better Pearson correlation
over the three proteins than the WT-specific models, this whole-library model has
the advantage that it can be applied to a binding site of any length, and not just that
of the WT. This enables the prediction of binding of all three proteins to the same
sequence set.

To show case the contribution of RNA structure to our whole-library models,
we compared whole-library models with and without the additional RNA structure
information. We observed a slight increase in prediction performance (Fig. S7b)
when the structural information was added for all three proteins. To assign
statistical significance to this observation, we trained a model on 80% of the data
and tested it on the remaining 20%. For each partition of the data, we performed
this train and test with and without the structural context. We performed 100
repetitions of this process and evaluated the improvement using a paired Wilcoxon
rank-sum test. This resulted in a significant improvement in the results when using
the structural context (p-value<10−6 for each of the three proteins).

We inspected the structural binding preferences by altering the binding site
structure and predicting its binding intensity by the ML model. Three different
structure alterations were made: bulge-, loop- and upper-stem-length altering
mutations. To conduct this analysis in a way that is independent from sequence effects,
all added nucleotides were added as a uniform vector (i.e., [0.25,0.25,0.25,0.25]).

To increase the upper-stem length, we randomly selected n positions (n= 1,2).
We then inserted a base-pair with a structure context of an upper stem (i.e., A–U or
C–G) to that position. Thus, we did not affect other structure elements of the
binding site. Shortening of the upper stem was done by randomly deleting base-
paired nucleotides. Increasing the length of the loop was done by randomly
selecting n positions (n= 1,2) and inserting in that position nucleotides with the
structure context of a loop. Shortening of the loop was done by randomly deleting
n nucleotides from it.

Increasing bulge size was done by adding one nucleotide with the appropriate
structure context. Deleting the bulge was done by simply removing the bulge
nucleotide. All sequences were examined by RNAfold and showed the desired
structure. The padding of these sequences was done in the same way described
earlier. To test the predicted binding cassette generated according to our models’
predictions, we created one million synthetic binding sites. We generated one
million random sequences that are in hamming distance of 3–7 from one of the
WT binding sites. Overall, we randomly selected one million out of 1.5 billion
options. Because the number of possible variants rises as the length of the sequence,
uniform selection of sequences will result in more variants of the long WT (PCP,
25-nt long) and less variants of the short WT (MCP, 19-nt). To overcome this bias,
we divided the random selection into three parts; in each part we randomly selected
333,333 sequences from the variants of one WT. We computed the binding
intensity of each of the proteins to the set of one million sequences using the
whole-library models. Then, to experimentally validate model accuracy, we chose a
sample out of the one million. We selected ten sequences that are single binders
(i.e., bound by a single protein and not by the two others), and ten that are double
binders (i.e., bound by two proteins and not by the third). As a reminder, binders
are defined as having a binding score greater than 3.5, and non-binders as having a
score smaller than 3.5. All are in hamming distance of at least 4 from one another
and all were not included in the original experimental library.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Fasta files are available at NCBI’s Sequence Read Archive (SRA). https://trace.ncbi.nlm.
nih.gov/Traces/sra/?study=SRP301887. All the relevant data are available from the
authors upon reasonable request. Source data are provided with this paper.

Code availability
The software and code are publicly available: ML code and data via github.com/
OrensteinLab/SynRBPbind/, https://doi.org/10.5281/zenodo.4421793. A web-tool for
cassette design called CARBP is available at: https://roee-amit.technion.ac.il/our-
research/software/.

Table 2 Hyper-parameters search for whole-library models.

Parameter space Final parameters

Parameter Initial space MCP QCP PCP

Nodes 5–40 45 45 45
Layers 1–3 1 1 1
Kernel length 4–10 5 5 5
Kernel number 4–35 24 24 24
Epochs 10,20..100 30 30 30

(Left) The search space for the hyper-parameters search. (Right) The hyper-parameters of the
final models.
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